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Over the rectangle £ = (—1. 1) x { —n, n) of R?, interpolation involving algebraic
polynomials of degree M in the x direction, and trigonometric polynomials of
degree N in the y direction is analyzed. The interpolation nodes arc Cartesian
products of the Chebyshev points x,=cos /M, j=0... M, and the equispaced
points y,=({/N—1)n, 1=0,.,2N 1. This interpolation process is the basis of
those spectral collocation methods using Fourier and Chebyshev expansions at the
same time. For the convergence analysis of these methods, an estimate of the
L*-norm of the interpolation crror is needed. In this paper, it is shown that this
error decays like N7+ M ° provided the interpolation function belongs to the
non-isotropic Sobolev space H™(2). ¢ 1987 Academic Press, Inc

1. INTRODUCTION AND BASIC NOTATIONS

Several numerical approximations of partial differential equations using
spectral methods give a solution which is a finite expansion in terms of
trigonometric (Fourier) polynomials in some directions and of Chebyshev
polynomials in the others. This is for instance the case of those problems
which are set in simply shaped domains, whose solution is periodic in some
directions, and submitted to Dirichlet or Neumann boundary conditions in
the remaining directions. A remarkable example is represcnted by the
Taylor-Couette flow problem (see, e.g., [8, 10,11]).

We will consider here a 2-dimensional domain Q=(—1,1)x(—n, )
though the results that will be proved can be extended to any domain of
the form (—1, 1)"x(—=n, )", n,m=1. The stability and convergence
analysis of the Chebyshev—Fourier spectral method relies upon the estimate
of the interpolation error. The interpolation nodes (those where the dif-
ferential equation is collocated) are the product of the Gauss-Chebyshev
points in the interval (—1, 1), and of a set of equispaced points in (—=, 7).
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This choice allows one to get the most of accuracy from the numerical
method, and to use the fast Fourier transform to carry out the com-
putations (see [5]).

In this paper we estimate the L>-norm of the interpolation error. It is
shown that this error vanishes as M~ "+ N *, where M and N are the
degree of the approximation in the x and v direction, respectively, provided
the function to be interpolated belongs to the non-isotropic Sobolev space
H™(Q) (see, c.g., [7]). Thus, the function is allowed to have different
regularities in the different directions. This estimate is optimal, for the
exponents of M ' and N~ are the highest possible, and no assumption is
made about the ratio M/N. Therefore, M and N are not asked to vanish at
the same rate.

The leading idea of this paper is to carry out the proof on the auxiliary
domain Q°=(—nM, tM)x (—nN, zN). In Q°, trigonometric polynomials
of degree M in x and N in y, undergo to Bernstein-type inequalities whose
constants are independent of either M and N.

The above idea was used first in [12] to carry out the error analysis for
Fourier interpolation in one space variable, and then in [3] for the com-
bined Fourier and finite element interpolation.

We denote with @ = (4, b) an open interval of R, and with CI,‘ (@) the set
of restrictions to @ of the infinitely differentiable functions of R which are
periodic of period b —a. The Sobolev space H;(©), for integer s >0, is the
closure of C (@) with respect to the norm

s 12
H”lu—):< Z &Dalﬂigw)) :

x=0
If 5 is not an integer, then the completion is made with respect to the norm

2

full,o = (”uHi\]‘e) + ‘“RO)!

where [s]=s— o is the integral part of 5, 0 <a <1, and
1,2

ror [} () — I ie
o= (] 0 )

Yoo |-\‘*_V’1 tao

is the seminorm of orders s of u.
To introduce the Fourier interpolation we set for any integer N >0

Sy=span{e® —N<k<N-1).

For any function u, continuous on [ —x, n], let Fyue S, be its (Fourier)
interpolant at the points

l
},1:<__1>n, 0</<2N 1. (1.1)
N
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Then if ue H}(—n, n) for some s> 3 we have (see [3, Lemma 1.9])

”u“FNu”v.( n‘n)SCNV ‘\Julv‘( L) 0§V<S. (12)

Let now w(x)=(l—x7) ", —l<x<1, be the Chebyshev weight
function. We denote with L2(—1, 1) the space of functions whose square is
integrable for the measure w(x) dx. For any positive integer r, H/(—1,1)

§

denotes the weighted Sobolev space of those functions whose derivatives of

order up to r belong to L2(—1,1). If r is a positive real number then

H7(—1,1) is defined by complex interpolation (see, e.g., [1, Chap. 4;6]).
Following {9, 7], for any positive real numbers r, s we define

H™ (@)= LYH?) 0 H)(L2)

where

LﬂHU:%LF%JOHHH—L1MWMwm=V wuwpﬂhma<x}

Moreover, for any integer s,

H‘.»-,(L?) = {u: (—mm)—L3(—1,1)] \aut\f,;us)

= [ HD/u(y)Hi‘:‘{ L dr< x};

while if s is real this space is defined by complex interpolation.
The space H™(£2) is a Hilbert space with the norm

-

2 2 1.2
HuHr,\,Q:(Hu”;,?u{’\,+ HuH;/:(/_f]) .

Finally H*(£2) will denote the closure with respect to the norm ||, of
C (L) (the space of restrictions to € of the infinitely differentiable
functions, periodic with period 2z along the y direction).

2. THE INTERPOLATION PROCESS AND THE Domain Q°

We introduce first the Chebyshev interpolation in the interval
{ —1<x <1} Let us define the set of points:

M
X;=c0s 4, j=0,., M. (2.2)

&:<1-1>m =0, 2M — 1; (2.1)
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The Iatter are the nodes of the Chebyshev-Gauss-Lobatto formula (e.g.,
{4]); they are symmetrically distributed around the point x=0.

Let P,, denote the space of algebraic polynomials of the variable x of
degree <M, and, for any ue C°[—1,1], let C,,ueP,, be the interpolant
of u at the points (2.2). Furthermore we set

w*(3) = u(cos J), —n< < (2.3)
We note that

T uR(3) dy. (2.4)

1
I, w(x) w(x) ([X:E |

Moreover, for any r =0 we have

* e oS el e Y20 (2.5)

We recall that the Chebyshev interpolant has the form

M
Cyulx)= Z i, T,(x), T, (x)=cos(k$),

k0

where #=arccos x and T, is the Chebyshev polynomial of degree k. The
i,s are the discrete Chebyshev coefficients of u, 1e. a,={(n/M)

*M ou(x;) T,(x,) (the asterisk means that the first and last term of the
sum must be halved). From (2.2), (2.3) and the parity of the function
(Chu)* it follows that

(Cx‘,u)*(lr}/):u*(é‘,), ]:0., 2M* 1.

Therefore, since
AM

(Cyu)*($)= Y ufexplii¥),  uf=3i,

k= - M

we conclude that (C,,u)* is the unique function of the space
M

S,’{,z{v:v(()): Y aexp(ikd), ay = M}

k- M

which interpolates the function u* at the points (2.1). Then (see
[2, Theorem 1.11)

lu* —(Cppt) ¥ i aey SCM" Tu*], (s Ou<grr>1 (26)



FOURIER AND CHEBYSHEV INTERPOLATION 119
We define now two auxiliary domains (sce Fig. 1)
Q*={(} y) —n<I<n, —w<y<my,
QO=1(&n) —Mrn<E<Mn, —Nn<n<Nnj,
and two mappings
@: Q" - Q*, D(E )= (M, n/N),

Y. 02* - Q, Y(Y, v)=(cos % 1)

Then for any function ©0 Q- C we define v*=¢ ¥ and '=
v¥o@(=v- ¥ ). The following relation can be easily checked

Il"*(','l')l,." ﬂ_n}:Mr ]3’1.0(."’]”1:( AMr Ar) ’20 (27)
A
v
‘ M7 N7
QO
|
T T
e
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S e -
| 1
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| | {
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|
\
|
|

-MmT-NT |

FiG. 1. The domains Q, £2* and Q"
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Similarly we have
‘l?*(‘gv : )1 s -mom) = A/“ 1”2‘170(57 ’ )'.\.( N . Nm) § > 0 (28)

We introduce now the finite dimensional space V,, v =P,,® Sy and the
Chebysev/Fourier interpolation operator 1, : C(2)— V,, » such that

Ly aulx,, ) =ulx;, ¥, j=0,,. M [=0,.2N—1, (2.9)

The points x; and y, were defined by (2.2) and (1.1}, respectively. For any
M, N, I,, vuis uniquely defined, and

Lywu=(Cy Fylu=(Fy Cylu

As we shall see, this operator induces an interpolation operator /9, , on the
master domain Q. For this, we define

70 _ ’A,l
Lu\f Vo, velVy )

Let us set

vk O 1,0 ik VK k)
S¥i=1t"=v* e ST,

and

The scalar functions @, and &, are the components of the mapping &,
namely @ (&)= ¢/M and @,(n)=n/N. It follows that

70 * O ()
4 M. \_S/tl ®SV

For any function ze C%(Q"), we denote with [}, ,ze V5, . the interpolant
of = at the points (\j’, 1/) j=0,,2M —1, 1=0,.,2N — 1, where x"=
"(%)=M3,, and y{ =@, '(y,)= Ny, Then we have

(L)’ =1, yu’  forallue CYQ). (2.10)

In the sequel the symbol #(X; Y) will denote the space of linear and con-
tinuous functionals from the Hilbert space X with values into the Hilbert
space Y. Moreover, let H"(QO) be the space which is formally defined as
H*(Q), provided in thal definition the space H’ is replaced with
H;(‘nM, nM), and the space H, is replaced with H;(—nN, nN).

LEMMA 2.1. For any couple (r,s) of real numbers satisfying
r s <2, there is a constant C° independent of both M and N such that

) 0
HI(’VI‘V” :/’(II;"\(.Q");1_3(!2“)) <V (2-1 1 )
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Proof. Let us set y, (&, n) =exp(ifE +iln). It is not hard to sec that if -
is any continuous functions of Q° then it is interpolant has the form

M N1
I?W.AVZ(CV’ n= Z* Z (z, l/./)M,N Z,:/(‘:» n)
j= M- N
where
M 12N

(Zo)yyn=m"Y Z yiye(x). 3.

Jj=0 =0

We recall that (see, e.g.. [2])
(z,0) = ; 0 dE dy if both =, ¢ belong to VY, ..
u()(l

Therefore

241 | 2N

H[(.i/..w:“iluz“): (1(41 N [(w N = u N n Z Z “5)~ ‘/]
=0 =0
Il we define Q7= (x¥, x ,+ Oxy), vy ) then Q0= U ‘Q",, j=0,.,2M -1,
[=0,. ,2Nﬁ1‘ (see Fig. 2).
Moreover, as 1/r+1/s<2, then H™(Q%)c C”(Q“,) (see, e.g., [3,
Lemma 1.37). Therefore,

REL U0

IIF/)\4 w—”z (Q“ Z z C//H H H m”

i 0 -0

F1G. 2. The decomposition of Q°.
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The constant C,, depends on r, s and on the measure of Q¢, (=77), thus we
can set C'=C,, and this constant is independent of M, N, j and /. Now we
observe that

oM 12N
Z Z (e H,\sz H:H}’/}"(sz“)

=0 =0

whence (2.11) holds taking = Cr’.

3. ERROR ESTIMATE IN L*()

In this section we give an estimate of the L’-norm of the interpolation
error u — I, yu for any function ue C°(Q). To this end, we note that

~ T rl
lu—Tyyuldoo=1 dv ' | — 14y vul” wix) dx
Yoo A
1 rn n )
=] dv [ It Ly au)*Pd9 (by24)
1 1 (U O
=33IN o — 1%, yu /20 (by (2.7), (2.8), (2.10)).

If we denote by E the identity operator, then, obviously, (I%, v — E)z=0
for all ze VY, . Then u® -1, yu®=(E—I5, \ )’ —z) for all ze VY, . It
follows that

x inf 0 —

12
:lbﬂ" Ty

H "
lex !

e —1as n Wo 00 S [E—1Ty M ,2?/(/i'-"uz“rlﬂ((z“n
2 MN ) r :

Using the result of Lemma 2.1 and the triangle inequality it follows that

— 1 e
H”*IM./\"“H(M),Qg\/1+(C0)h — inf fu’— hr/ oy ir 'ty l<2

\/' MN - el”\
(3.1)

An estimate of the infimum on the right-hand side of (3.1) 1s now needed.
Let P, . denote the orthogonal projection operator from L*(—m, ) onto
Sw. Then (see [12;3, Lemma 1.7])

“U*P\"J’VU“\% mn)g('va a|vl(;_( O<v§o’, (32)

)
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provided ve Hj(—m=, n). Similarly, if P, is the orthogonal projection
operator from L*(—m, 7) onto S%,, then

Hv_P\’,Mv“u,(~n.7!)<(’1A/[‘1 ’)|v|p<(ﬂn_n)‘ Ogugp’ (33)

provided ve H5(—m, m).
If now PJ, denotes the orthogonal projection operator from
L*(—nN, nN) upon S, and P°,, that from L*(—nM, nM) upon S%°, then

P_(f-‘MZO =(P mz), P(\)»,NUO =(P, v0)’,

for all z and v in L*(—n, ). From the above relations and from (2.7),
(2.8), (3.2}, and (3.3) we obtain

0 0
120 — P?».MZOHr.(—nM.nM) SO0 - artonmy v:’e H;( —nM, M), r=0,
(3.4)
HUO — Pr(\)‘./v UOH,\-‘( 2NN S C(S)|UO| o AN.TN) vi'e H;,( —aN, nN), s =20.

(3.3)

We are now going to establish a Bramble—Hilbert type lemma for
trigonometric approximation in ©°. This result will then be used to get the
error bound for the interpolation error.

Lemma 3.1 Let u’e H(Q°) for some r=20, s=0. Then there exists a
constant C®, depending on r, s but independent of N and M such that

nMf

. 0 00 02

mj Hu —z]IH;A(Qo)< C {J g /o 17 NP
- T

TeVyn

TN
+J vd’]|”0|,z-,( n,w.n.w)}- (3.6)

N
Proof.  For any function z of the space S we have
Lzl vy S CHZl 220 2w av Vs =0, (3.7)

where C is a constant independent of N (see [3, Lemma 2.1]). Similarly, if
ze S%° then there is a constant C independent of M such that

Izl r( M. M) < (2|l LA —nM.xM)» Vr=0. (3-8)
We have
0 i 0 2 ™Moo 2
1= 2l iy :J N dnlu® —z|I7, nM. M) +J ; dlllu” — zh—anany (3.9)

640,51:2-3
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Taking = P ,, P yu® and noting that z= P9, u’ — P, (u°— PV u") we
get

N
v( Vdr]”ll(ri':”i( AM.M)

i 0 0
<2 {J N dnllu” — P(\):M” H(,)( MM
-

AN

+

123

(1) Oy
P (= P )2, }
i

ATTN AN |
02 0 NE
<C { ) N dniu ‘m MM ) +J . d”l“P(\):M(u - P(;);N“( )“(7)( HALR.‘LI)}
J N

{by (3.4) and (3.8}).
Now we note that

M

dgy“uOi PV(‘J‘“VHOH(Z)“ NNy

N

0 TS
N dﬂHP(\),J,,(ll - P‘?.N” )HG( rrM.nM)<

n - M

Then, using (3.5) we conclude that

AN

QO ~i2
dnllu 7_Hn( M. M)
N

N o M
M 2 w072
g (’ | v (/7”11 |r_( nM.nM) + ( a’C_‘u 1.\_( r(.\"‘n’\’]}'

s M

(3.10)

Similarly, noting that z=P% P, u’=P) u’— P \(u’— P° ,u’), and
using (3.4), (3.5), (3.7), we conclude that

seM 0 -
§ de|u’ —z||2, RNWSC{
M ’

rTAM
de|u’|?,
M

nN.wN)

AN
+» v d?1|u0 E,(nMJr/LI)}' (3.11)

L%

Now (3.6) is a consequence of (3.9), (3.10), and (3.11). ]

We can finally state the main result of this section.
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THEOREM 3.1.  For any couple of positive real numbers r,s such that

45 ' <2 and any ue H¥(Q), we have

l =Ty yullgoo SCM ™"+ N ul,, 0 (3.12)

where C is a positive constant independent of both N and M.

Proof. From (2.8), (2.3) and (2.4) we get

rrM 5 Loy ~mAL
v délu(”:,( aN.nN) = N -

dlu*|?,

%4

Y o YoM
~1

=2AMN)N | wlv)daul?
-1

)

Furthermore, from (2.7), (2.3) and (2.4) it follows

TN

N
02 oaql 2 *|2
f ’dr]\u 170 sy =M J vdr]{u |

L n.mh
N N

~n

<(MNYM J dvllu* |3 e (314)

bid

Now (3.12) is a consequence of (3.1), (3.6), and (3.13), (3.14). ]

Remark 3.1.  As it can be easily checked, the previous proof allows one

to get (3.12) also for the case where Q= (-1, )" x(—=xr, n)", m,n>= 1, and
Chebyshev interpolation is used in (— 1, 1)” while Fourier interpolation is
used in (—m, 7)". In this case it should be assumed that mr '+ ns ' <2,
so that every ue H™(82) is continuous in .

[$5]
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