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Over the rectangle 0 = ( - I. I) x ( -IT, IT) of R', interpolation involving algebraic
polynomials of degree M in the x direction, and trigonometric polynomials of
degree N in the y direction is analyzed. The interpolation nodes arc Cartesian
products of the Chebyshev points x, = cos IT//M, j = 0..... M, and the equispaced
points YI ~ (//N -- I) IT, I ~ 0, ... , 2N I. This interpolation process is the basis of
those spectral collocation methods using Fourier and Chebyshev expansions at the
same time. For the convergence analysis of these methods, an estimate of the
L '-norm of the interpolation error is needed. In this paper, it is shown that this
error decays like N- '+ M' provided the interpolation function belongs to the
non-isotropic Sobolev space H'·'(O). (19X7 Academic Pre". Inc

L INTRODUCTION A:'-JD BASIC NOTATIONS

Several numerical approximations of partial differential equations using
spectral methods give a solution which is a finite expansion in terms of
trigonometric (Fourier) polynomials in some directions and of Chebyshev
polynomials in the others. This is for instance the case of those problems
whieh are set in simply shaped domains, whose solution is periodic in some
directions, and submitted to Dirichlet or Neumann boundary conditions in
the remaining directions. A remarkable example is represented by the
Taylor-Couette flow problem (see, e.g., [8, 10,11])

We will consider here a 2-dimensional domain Q = (-I, I) x (-n, n)
though the results that will be proved can be extended to any domain of
the form (-I, It'x(-n,n)", n,m):!. The stability and convergence
analysis of the Chebyshev-Fourier spectral method relies upon the estimate
of the interpolation error. The interpolation nodes (those where the dif­
ferential equation is collocated) are the product of the Gauss-Chebyshev
points in the interval ( - 1, 1), and of a set of equispaced points in ( - n, n).
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This choice allows one to get the most of accuracy from the numerical
method, and to use the fast Fourier transform to carry out the com­
putations (see [5J).

In this paper we estimate the L 2-norm of the interpolation error. It is
shown that this error vanishes as M- r + N s, where M and N are the
degree of the approximation in the x and y direction, respectively, provided
the function to be interpolated belongs to the non-isotropic Sobolev space
Hr'(Q) (see, e.g., [7J). Thus, the function is allowed to have different
regularities in the different directions. This estimate is optimal, for the
exponents of M 1 and N - 1 are the highest possible, and no assumption is
made about the ratio M/ N. Therefore, M and N are not asked to vanish at
the same rate.

The leading idea of this paper is to carry out the proof on the auxiliary
domain QO = ( -nM, nM) x ( -nN, nN). In QO, trigonometric polynomials
of degree M in x and N in y, undergo to Bernstein-type inequalities whose
constants are independent of either M and N.

The above idea was used first in [12 J to carry out the error analysis for
Fourier interpolation in one space variable, and then in [3J for the com­
bined Fourier and finite element interpolation.

We denote with e = (a, h) an open interval of R, and with C/: (e) the set
of restrictions to e of the infinitely differentiable functions of R which are
periodic of period h - a. The Sobolev space H;,( e), for integer s ~ 0, is the
closure of C/;( e) with respect to the norm

Ilull,.fJ = Cto IIDaUI1LfJi) 1/2.

If s is not an integer, then the completion is made with respect to the norm

where [s J= s - (J is the integral part of s, 0 < a < 1, and

_(r r. ID[S](U(X).. - u(y)W ..) 1,2

lui ,(') - I I I' '11 + 2" dx dJ
~6) ~(c) .\ -.I

is the seminorm of orders s of u.
To introduce the Fourier interpolation we set for any integer N> °

Srv = span{e ik
', -N~k~N-!}.

For any function u, continuous on [-n, nJ, let FrvUESrv be its (Fourier)
interpolant at the points

v = (~-!) n. / IV ' o~ l~ 2N - I. ( I.! )
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Then if u E H;( - n, n) for some s> 1we have (see [3, Lemma 1.9J)
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O::s; v::S; s. ( 1.2)

Let now w(x) = (I - x 2
) 1/2, - I < x < I, be the Chebyshev weight

function. We denote with L~( - I, I) the space of functions whose square is
integrable for the measure w(x) dx. For any positive integer r, H:,( -I, I)
denotes the weighted Sobolev space of those functions whose derivatives of
order up to r belong to L~( - I, I). If r is a positive real number then
H:) - I, I) is defined by complex interpolation (see, e.g., [I, Chap. 4; 6J).

Following [9, 7J, for any positive real numbers r, s we define

W"(Q) = L~(H~) n H;(L~)

where

Moreover, for any integer s,

H,S(U) = {u: (-7[, 7[) -> L~( -1,1 )lli1ill;/(L'1
\ .\ .. I \

while if s is real this space is defined by complex interpolation.
The space Hr"(Q) is a Hilbert space with the norm

Ilullr,sQ = (1Iull;;I!{~' + Il ull7r:il;/i2.

Finally H~·S(Q) will denote the closure with respect to the norm Ilrllr.s.u of
C{~ (Q) (the space of restrictions to Q of the infinitely differentiable
functions, periodic with period 2n along the y direction),

2. THE INTERPOLATION PROCESS AND THE DOMAIN Q()

We introduce first the Chebyshev interpolation in the interval
{ - I ::s; x::S; I }. Let us define the set of points:

j = 0, ... , 2M - I;

j=o, ..., M,

(2.1 )

(2.2 )
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The latter are the nodes of the Chebyshev Gauss Lobatto formula (e.g.,

[4 J); they are symmetrically distributed around the point x = o.
Let PM denote the space of algebraic polynomials of the variable x of

degree ~M, and, for any UECO[ -~l, IJ, let CHUEP M be the interpolant
of U at the points (2.2). Furthermore we set

We note that

u*(,9) = u(cos ,9), - n ~ ,9 ~ n. (2.3 )

·1 l'n
I lI(X) w(x) clx =") I u*(.9) cia.

,J I ....... ~ IT

Moreover, for any r ~ 0 we have

(2.4 )

lir ~ O. (2.5)

We recall that the Chebyshev interpolant has the form

If

CMu(x) = L Uk Tk(x),
k~()

where a= arccos x and Tk is the Chebyshev polynomial of degree k. The
ilk's arc the discrete Chebyshev coefficients of lI, i.e., Uk = (n/M)
L*/~o lI(X,) Tk(x,) (the asterisk means that the first and last term of the
sum must be halved). From (2.2), (2.3) and the parity of the function

(CMu)* it follows that

j=O,... , 2M -1.

Therefore, since

M

(C M u)*(.9)= L u% exp(iFh
M

we conclude that (CH lI)* is the unique function of the space

SX1 = {v: vun = I :Xk exp(ik.9), :X M = IX M}
k M

which interpolates the function u* at the points (2.1). Then (see
[2, Theorem 1.1])

o~ {i ~ r, r>!. (2.6 )
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We define now two auxiliary domains (see Fig. I )

Q*={(,9,y): -7[<,9<n, -7[<r<nj,

and two mappings
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'P: Q* -> Q.

cP((, /ll = ((/M, /1/N ),

'P( ,9, y) = (cos ,9. r).

Then for any function v: Q -> C we define 1'* = v 'P and VO =
1'* cPt = l' 'P cP). The following relation can be easily checked

r~O. (2.7)

-M7f,-N71"

-71".- -=-

I \ I
1 \ I Q*
: I :

--~~f-71"

: I :
I I 1

1-71"
I
I

M71",N71"

•

FIG. 1. The domains Q. Q*. and Q O
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Similarly we have
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Iv*(,Y,' )1,.( rr.rrl = N' 1:2Iv()(~,· )1,.1 Nn.Nn)' s~o. (2.8)

We introduce now the finite dimensional space V M . N = P M @ SN and the
Chebysev/Fourier interpolation operator (lUI!: C°(t2) ---> V l1 . N such that

i = 0, ... , M, 1= 0, ... , 2N - 1, (2.9)

The points xi and y/ were defined by (2.2) and (1.1 ), respectively. For any
M, N, IlfNu is uniquely defined, and

As we shall see, this operator induces an interpolation operator f,~.N on the
master domain QO. For this, we define

V~:f.\ = : V" = l' tp C/J, l' E V I1 . N :.

Let us set

and

The scalar functions C/J 1 and C/J 2 are the components of the mapping C/J,

namely C/J I(0 = ~IM and C/J2(~71 = 171N. It follows that

For any function Z E CO(Qo), we denote with I;~f.!'z E V1,:u, the interpolant
of Z at the points (x?' yn j = 0, ... , 2M - I, 1= 0, ..., 2N - 1, where x? =
C/J I 1(,9 i ) = M,Y/, and v7 = C/J 2 I(y/) = Ny/. Then we have

for all U E CO(Q). (2.10)

In the sequel the symbol Y(X; Y) will denote the space of linear and con­
tinuous functionals from the Hilbert space X with values into the Hilbert
space Y. Moreover, let H;;'(Qo), be the space which is formally defined as
H~"(Q), provided in that definition the space H: is replaced with
H~( - nM, nM), and the space H: is replaced with H~( - nN, nN).

LEMMA 2.1. For anv couple (r, s) oj' real numhers satisfying
r I + s - I < 2, there is a constant CO independent oj' hoth M and N such that

(2.11 )
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Proof Let us set x/J~, ry) = exp(ij~ + ilry). It is not hard to see that if ::
is any continuous functions of Q O

, then it is interpolant has the form

/14 N 1

r;'>f.N::(~' IJ) = I* L (::, XU)M.N i:iJl~, tl)
I~ M 1- N

where

2M I 2N 1

(::'V)M.N=n 2 L I ::(:rj),.l·ndx~),rn·
I~O I~O

We recall that (see, e.g., [2])

(::, V)MN = r ::u d~ dry
• flO

Therefore

if both ::, v belong to V',:fN'

~.H [~,.\' I

Ilf) _112 ~(r) ~ 11) ~l _~2 '\ '\ I~(,'O l'Ol[2
.M.N-·/)IUOI- M.N-,IM.N-M.:V-" L L -"'.1'

I 0 1 Il

If we define Q O = (\0 ,.0 ) x ().o ),0. ) then QO = U I QO /' = 0 J '1 ~ 1;'/ »'~f+t ./'./-+-I l ;'.1'_ , ... , .... lV ,

1= 0,... , 2N ~ 1} (see Fig. 2).
Moreover, as I/r + lis < 2, then H"(Q:11) c CO(Q:1/) (see, e.g., [3,

Lemma 1.3]). Therefore,

2/1-'1 I l;V 1

Ilf~.N::11 [)(QO) ~ n
2 I L Cull:IIIl"(Q~)()'

i Il 1 0

1 1 I
I i:

i

n~,

xy.y?

I I

I

FIG. 2. The decomposition of QO
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The constant C1.I depends on r, S and on the measure of Qj!1 ( = 1[2), thus we
can set [; = Co and this constant is independent of M, N, j and I. Now we
observe that

2M 1 2"1 1

I Ilzf
i--ll I II

whence (2.11) holds taking Cll = [;1[2.

3. ERROR ESTIMATE 11\ e(Q)

In this section we give an estimate of the L 2- norm of the interpolation
error u-/lI.vu for any function UECll(Q). To this end, we note that

.'~ Tr. ,. I

u-IH.vull~.Il.Q= I dv I lu-I M . N uI 2
Ir(x) dx

~'iT .. 1

(by 2.4))

(by (2.7), (2.8), (2.10)).

If we denote by E the identity operator, then, obviously, (r~uv -- E) z = 0
for all z E V(~fV' Then u ll

-- r~fVUll = (E - r~uv)( u ll
- z) for all z E Vl,~fV- It

follows that

Using the result of Lemma 2.1 and the triangle inequality it follows that

if r 1+ S 1<2.

(3.1 )

An estimate of the infimum on the right-hand side of (3.1) is now needed.
Let P '".V denote the orthogonal projection operator from e( - 1[, 1[) onto
SlY' Then (see [12; 3, Lemma 1.7J)

ill' - p,.vvll d n.n) "S eN' "Iv!".( n.n!' O"S v "S (J, (3.2)
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provided v E H;( - n, n). Similarly, if P<.M is the orthogonal projection
operator from L 2( - n, n) onto S!t, then

(3.3)

provided v E H~( - n, n).
If now P~ N denotes the orthogonal projection operator from

L 2( - nN, nN)~pon S~, and P~.M that from e( - nM, nM) upon st/\ then

Po ,0 _ (P )0
l,N V - r,Nv,

for all z and v in e( -n, n). From the above relations and from (2.7),
(2.8), (3.2), and (3.3) we obtain

nA4,rrA1 )'

rr/'vl,rr.'\')

VZO E H;,( - nM, nM), r;? 0,

(3.4 )

V1'° E H;,( - nN, nN), .I;? 0.

(3.5 )

We are now going to establish a Bramble-Hilbert type lemma for
trigonometric approximation in QO. This result will then be used to get the
error bound for the interpolation error.

LEMMA 3.1. Let U
O

E H~'\(QO) for some r;? 0, s;? 0. Then there exists a
constant Coo, depending on r, .I hut independent of Nand M such that

Proof For any function z of the space S~ we have

(3.6)

Ilzll,( -nN.nN):(; CfIzll L'( nN,rrNI' "Is;? 0, (3.7 )

where C is a constant independent of N (see [3, Lemma 2.1]). Similarly, if
z E S!t0, then there is a constant C independent of M such that

We have

II zllr.( nM.nM):(; Cllz II L'(- nM,nMI' Vr;? 0. (3.8)

640.51·2-1
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Taking z = PC,) P(~ ,uo and noting that z = pO UO~ pO (uo~ pO ,uo) we
\.At .1'/" .\,AI x,A1 ~.l'v,

get

Jri\4.rr/14)

• ",V }o 0 0 0, 1+ J nN dIJIIP\_~f(U --P"N U )11,,1 nMnM)

(by (3.4) and (3,8)),

Now we note that

"'IT/V'

I dIJIIPO,,(uO_-P,O,uO)II"
\"If \ "v 0, (

'" n/'/

Then, using (3.5) we conclude that

"T(:''i

I I II 0 _Ii 1
(~1 u ~- Ir,1 nM,nMI

" IT/V

(3.10)

Similarly, noting that z = pO ,po, UO = pO UO ~ pO ,(uo ~ po uo), and
.) ,/,y .\, ,\;/ l,lV .1.lv x,AI

using (3.4), (3.5), (3.7), we conclude that

Now (3.6) is a consequence of (3.9), (3,10), and (3.11). I
We can finally state the main result of this section,

(3.11 )
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THEOREM 3.1. For any couple oj' positive real numhers r, .I' such that
r 1+.1' 1 <2 and anI' uEHr"(Q) we have

~ p ,

Ilu - !,HNullo,o,Q ~ C(M-
r + N' ')llull"I,Q

where C is a positive constant independent oj" hoth Nand M.

Proal From (2,8), (2,3) and (2.4) we get

(3,12)

1
'1[M d~lu"I.2

1,1
oJ n.H

·"'IT.'\1

- N I
2s I i·e 1 * 1

2
1[N,1[N) - (" U s'l

.. ITA1
n.n:)

c 1

= 2(MN) N 2, j Ir(X) dxlul~1 1[1[1'
1

Furthermore, from (2.7), (2.3) and (2.4) it follows

(3.13 )

r-T[.'V

- M ' 2,. J i 1 *1 2
1[M,1[M) - Gf/ U "'.( 1[.1[1

n,"''!

~ (MN) M 2,.r drllu*n:1
1[

1.11' (3.14)

Now (3.12) is a consequence of (3.1), (3.6), and (3.13), (3.14). I

Remark 3.1. As it can be easily checked, the previous proof allows one
to get (3.12) also for the case where Q = (-1,1 t' x (-n, n)", m, n): I, and
Chebyshev interpolation is used in ( - I, 1)111 while Fourier interpolation is
used in (- n, n )". In this case it should be assumed that mr- 1 + ns 1 < 2,
so that every U E Hr'\(Q) is continuous in Q.
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